Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 659
Filtrar
1.
Protist ; 175(2): 126015, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38301533

RESUMEN

Herein we describe a new photosynthetic euglenoid species found in Poland - Euglena mazurica. A large population exists in a small, eutrophic body of water located in a pasture near Mikolajki town inside the Masurian Landscape Park (covering a part of the Masurian Lake District in Poland). The unique cell shape (corkscrew-like) discerns it well from other previously described euglenoid species with metabolic cells. The new species possesses two plate-like chloroplasts each with a pyrenoid accompanied by two paramylon caps placed on either side of it (diplopyrenoids). On the phylogenetic tree, the new species is situated within the Euglena clade. Though it is a sister branch to three clades - one representing the similar Euglena agilis, characterized by its fusiform cells and two chloroplasts with diplopyrenoids, the two species are clearly morphologically and molecularly distinct.


Asunto(s)
Euglena , Euglénidos , Euglena/metabolismo , Filogenia , Polonia , Fotosíntesis
2.
Nat Commun ; 15(1): 1628, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388527

RESUMEN

Euglena gracilis, a model organism of the eukaryotic supergroup Discoba harbouring also clinically important parasitic species, possesses diverse metabolic strategies and an atypical electron transport chain. While structures of the electron transport chain complexes and supercomplexes of most other eukaryotic clades have been reported, no similar structure is currently available for Discoba, limiting the understandings of its core metabolism and leaving a gap in the evolutionary tree of eukaryotic bioenergetics. Here, we report high-resolution cryo-EM structures of Euglena's respirasome I + III2 + IV and supercomplex III2 + IV2. A previously unreported fatty acid synthesis domain locates on the tip of complex I's peripheral arm, providing a clear picture of its atypical subunit composition identified previously. Individual complexes are re-arranged in the respirasome to adapt to the non-uniform membrane curvature of the discoidal cristae. Furthermore, Euglena's conformationally rigid complex I is deactivated by restricting ubiquinone's access to its substrate tunnel. Our findings provide structural insights for therapeutic developments against euglenozoan parasite infections.


Asunto(s)
Euglena , Membranas Mitocondriales , Transporte de Electrón , Membranas Mitocondriales/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético
3.
Environ Res ; 248: 118273, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38280528

RESUMEN

Diesel, as a toxic and complex pollutant, is one of the main components in oily wastewater, and poses serious threats to the aquatic environment and the health of organisms. Employing environmentally friendly biostimulants to enhance the metabolic functions of microorganisms is currently the optimal choice to improve the biodegradation of oil-containing wastewater efficiency. This study takes Pseudomonas aeruginosa LNR1 as the target, analyzing the physiological responses and molecular mechanisms of biofilm formation when enhanced by the extracellular metabolites of euglena (EME) for diesel degradation. The results show that EME not only induces auto-aggregation behavior of strain LNR1, forming aerobic suspended granule biofilm, but also promotes the secretion of signaling molecules in the quorum sensing (QS) system. Transcriptomic and proteomic analyses indicate that the stimulatory effect of EME on strain LNR1 mainly manifests in biofilm formation, substance transmembrane transport, signal transduction, and other biological processes, especially the QS system in signal transduction, which plays a significant regulatory role in biofilm formation, chemotaxis, and two-component system (TCS). This study collectively unveils the molecular mechanisms of biostimulant EME inducing strain LNR1 to enhance diesel degradation from different aspects, providing theoretical guidance for the practical application of EME in oily wastewater pollution control.


Asunto(s)
Euglena , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Proteómica , Euglena/metabolismo , Aguas Residuales , Factores de Virulencia , Biopelículas , Perfilación de la Expresión Génica , Proteínas Bacterianas/genética
4.
Nutr Res ; 119: 90-97, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37769481

RESUMEN

Euglena gracilis (Euglena) is a microalgae found in most freshwater environments that produces paramylon, an insoluble ß-1,3-glucan linked to human immunity. We hypothesized that Euglena powder has effects on immune function in apparently healthy adults. The study included male or female volunteers between the ages of 20 and 70 years who had white blood cell counts ranging from 4 × 103/µL to 10 × 103/µL, a "severe" rating on the stress questionnaire from the Korea National Health and Nutrition Examination Survey, and at least 2 upper respiratory infections with cold-like symptoms in the previous year. Participants received either a placebo or 700 mg of Euglena powder daily for 8 weeks. The study measured natural killer cell activity, cytokine concentrations, and blood lipid profiles to confirm the immune effect of Euglena consumption. In conclusion, Euglena improved immunological function through natural killer cell activity. Safety assessment showed no significant changes in vital signs or clinical chemistry indicators, and there were no adverse events associated with Euglena consumption. Euglena supplementation may help boost the immune systems of healthy individuals.


Asunto(s)
Euglena gracilis , Euglena , Adulto , Humanos , Masculino , Femenino , Adulto Joven , Persona de Mediana Edad , Anciano , Polvos , Voluntarios Sanos , Encuestas Nutricionales , Suplementos Dietéticos , Células Asesinas Naturales , Inmunidad
5.
Biosci Biotechnol Biochem ; 87(5): 491-500, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36869792

RESUMEN

Light-independent functions of carotenoids in photosynthetic organisms are poorly understood. Here, we investigated the growth properties of microalga, Euglena gracilis, under altered light and temperature using norflurazon-treated carotenoid-deficient cells and genetically modified strains, including nonphotosynthetic SM-ZK and colorless cl4. Norflurazon treatment decreased carotenoid and chlorophyll contents, causing cell bleaching. SM-ZK strain had lower carotenoid content than wild-type (WT) strain, and it was below the detectable level in the cl4 strain. Norflurazon treatment decreased phytoene synthase EgCrtB levels, although EgcrtB was transcriptionally induced. Carotenoid deficiency in norflurazon-treated cells and the cl4 strain caused similar extents of delayed growth under light and dark conditions at 25 °C, indicating that carotenoids promote growth in darkness. Both WT and SM-ZK strains exhibited similar growth rates. Dark conditions at 20 °C enhanced the growth delay of norflurazon-treated cells and the cl4 strain. These results indicate that carotenoids impart environmental stress tolerance to E. gracilis in light-dependent and light-independent manners.


Asunto(s)
Euglena gracilis , Euglena , Luz , Oscuridad , Clorofila , Carotenoides
6.
Artículo en Inglés | MEDLINE | ID: mdl-36858138

RESUMEN

Currently, there are no standard international test methods for assessing aquatic and soil toxicity, with aquatic toxicity tests based on limited Euglena species. Here, we proposed Euglena species as extended test species, especially as new soil test species for a paper-disc soil method, considering its ecologically important roles in providing highly bioavailable in-vivo nutrients to upper trophic level organisms. We conducted experiments to identify the optimal exposure duration for two Euglena species (Euglena viridis and Euglena geniculata). We demonstrated the toxic effects of nickel (model contaminant) on their photosynthetic parameters and growth in freshwater. The growth and photosynthetic activity of three Euglena species were significantly inhibited in nickel-contaminated soil during paper-disc soil tests, especially the test species adsorbed onto paper-disc soil. Euglena gracilis was more sensitive to nickel than E. viridis and E. geniculata in freshwater and soil. Thus, E. viridis and E. geniculata have potential as additional test species for improving test species diversity, while all three species have potential as new soil test species for soil toxicity assessment. Thus, results these species may be suitable for routine aquatic toxicity testing and new soil toxicity testing, addressing the current paucity of test species in freshwater and soil toxicity assessment.


Asunto(s)
Euglena gracilis , Euglena , Biomarcadores Ambientales , Níquel/toxicidad , Fotosíntesis
7.
Bioresour Technol ; 371: 128582, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36610485

RESUMEN

Sustainable aviation fuels (SAFs) can contribute reduce greenhouse gas emissions compared to conventional fuel. With the increasing SAFs demand, various generations of resources have been shifted from the 1st generation (oil crops), the 2nd generation (agricultural waste), to the 3rd generation (microalgae). Microalgae are the most suitable feedstock for jet biofuel production than other resources because of their productivity and capability to capture carbon dioxide. However, microalgae-based biofuel has a limitation of high freezing point. Recently, a jet biofuel derived from Euglena wax ester has been paying attention due to its low freezing point. Challenges still remain to enhance production yields in both upstream and downstream processes. Studies on downstream processes as well as techno-economic analysis on biofuel production using Euglena are highly limited to date. Economic aspects for the biofuel production will be ensured via valorization of industrial byproducts such as food wastes.


Asunto(s)
Euglena , Microalgas , Biocombustibles , Dióxido de Carbono , Biomasa
8.
Biol Open ; 11(11)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36412269

RESUMEN

Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.


Asunto(s)
Euglena , Euglena/fisiología , Biotecnología , Simbiosis
9.
Mar Drugs ; 20(8)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36005522

RESUMEN

Euglena, a flagellated unicellular protist, has recently received widespread attention for various high-value metabolites, especially paramylon, which was only found in Euglenophyta. The limited species and low biomass of Euglena has impeded paramylon exploitation and utilization. This study established an optimal cultivation method of Euglena pisciformis AEW501 for paramylon production under mixotrophic cultivation. The results showed that the optimum mixotrophic conditions were 20 °C, pH 7.0, and 63 µmol photons m-2∙s-1, and the concentrations of sodium acetate and diammonium hydrogen phosphate were 0.98 g L-1 and 0.79 g L-1, respectively. The maximal biomass and paramylon content were 0.72 g L-1 and 71.39% of dry weight. The algal powder contained more than 16 amino acids, 6 vitamins, and 10 unsaturated fatty acids under the optimal cultivation. E. pisciformis paramylon was pure ß-1,3-glucan-type polysaccharide (the purity was up to 99.13 ± 0.61%) composed of linear glucose chains linked together by ß-1,3-glycosidic bonds. These findings present a valuable basis for the industrial exploitation of paramylon with E. pisciformis AEW501.


Asunto(s)
Euglena gracilis , Euglena , Microalgas , Euglena gracilis/metabolismo , Glucanos/metabolismo , Microalgas/metabolismo
10.
Front Biosci (Landmark Ed) ; 27(4): 120, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35468679

RESUMEN

INTRODUCTION: Natural phytochemicals are considered safe to use as therapeutic agents. There is a growing trend toward exploring anticancer effects of crude algal extracts or their active ingredients. Euglena tuba, a microalga, contains excellent antioxidant potential. However, the anticancer property of E. tuba has not been explored. This study investigates the chemical profiling as well as antitumor property of methanolic extract of E. tuba (ETME) against Dalton's lymphoma (DL) cells. MATERIALS AND METHODS: E. tuba, procured from northern part of India, was extracted in 70% methanol, dried at room temperature, and stored at -20 ∘C for future use. A freshly prepared aqueous solution of ETME of different concentrations was employed into each experiment. The ETME mediated anti-tumor response in Dalton's lymphoma was evaluated in the inbred populations of BALB/c (H2d) strain of mice of either sex at 8-12 weeks of age. The cytotoxicity of ETME in cancer cells, effects on morphology of cell and nucleus, alteration in the mitochondrial membrane potential, and level of expression of proapoptotic proteins (Bcl-2, cyt C, Bax and p53) were done using known procedures. RESULTS: The ETME contained high content of total alkaloids (96.02 ± 3.30 mg/100 mg), flavonoids (15.77 ± 2.38 mg/100 mg), carbohydrate (12.71 ± 0.59 mg/100 mg), ascorbic acid (12.48 ± 2.59 mg/100 mg), and phenolics (0.94 ± 0.05 mg/100 mg). Gas chromatography-mass spectrometry (GC-MS) analysis indicated the presence of 23 phytochemicals with known anticancer properties. DL cells treated with ETME exhibited significant and concentration dependent cytotoxicity. Florescent microscopy and flow cytometry of ETME treated DL cells indicated significant repair in cellular morphology and decreased mitochondrial potential, respectively. Western blot analysis displayed up-regulation of proapoptotic proteins (Bax, Cyt-c, p53) and down regulation of anti-apoptotic protein (Bcl2) in DL cells treated with ETME. CONCLUSIONS: The findings of this study clearly indicated that the anticancer property of ETME was mediated via reduction in mitochondrial potential and induction of apoptotic mechanism. Further studies are warranted to explore the anticancer activities of active ingredients present in this microalga of pharmaceutical importance.


Asunto(s)
Euglena , Microalgas , Animales , Metanol , Ratones , Fitoquímicos/farmacología , Tubulina (Proteína) , Proteína p53 Supresora de Tumor , Proteína X Asociada a bcl-2
11.
STAR Protoc ; 3(1): 101043, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-34977684

RESUMEN

Euglena gracilis is a source of high-value natural products. A major factor affecting consistent production of Euglena biomass is strain stability. Cryopreservation is a leading strategy for cell-line storage that helps ensure process reproducibility. We developed a simple cryopreservation protocol for heterotrophically cultured Euglena that enables the recovery of cells after 1 year with a cell viability of ≅80%. This protocol is suitable for labs interested in the long-term preservation of heterotrophic cultures of Euglena and related species.


Asunto(s)
Euglena gracilis , Euglena , Biomasa , Criopreservación , Reproducibilidad de los Resultados
12.
Bioresour Technol ; 344(Pt B): 126418, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34838962

RESUMEN

This short communication investigated biodiesel production from Euglena Sanguineamicroalgaeand custard appleusing nano CaO as a heterogeneous catalyst. Different solvents were used to extract the oil at a fixed speed, time, and temperature for the samples to estimate the optimized oil yield%. The catalyst was synthesized by sol gel method in nano-scale. It was further characterized by FTIR spectroscopy, SEM, and XRD. The algal oil was pre-treated and trans-esterified with a catalyst to produce alkyl esters. The optimized process variables were determined using response surface methodology by varying parameters such as methanol to oil ratio and catalyst weight% for algal bio-oil and MeOH to oil ratio, time, and catalyst weight% for seed oil. The GC-MS was done to characterize the presence of biodiesel. Kinetic studies were done for the optimized condition for the algal oil and seed oil and it follows the pseudo-first order reaction.


Asunto(s)
Annona , Euglena , Biocombustibles , Catálisis , Esterificación , Cinética , Aceites de Plantas
13.
Nutrients ; 13(11)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34836165

RESUMEN

It is difficult to match annual vaccines against the exact influenza strain that is spreading in any given flu season. Owing to the emergence of drug-resistant viral strains, new approaches for treating influenza are needed. Euglena gracilis (hereinafter Euglena), microalga, used as functional foods and supplements, have been shown to alleviate symptoms of influenza virus infection in mice. However, the mechanism underlying the inhibitory action of microalgae against the influenza virus is unknown. Here, we aimed to study the antiviral activity of Euglena extract against the influenza virus and the underlying action mechanism using Madin-Darby canine kidney (MDCK) cells. Euglena extract strongly inhibited infection by all influenza virus strains examined, including those resistant to the anti-influenza drugs oseltamivir and amantadine. A time-of-addition assay revealed that Euglena extract did not affect the cycle of virus replication, and cell pretreatment or prolonged treatment of infected cells reduced the virus titer. Thus, Euglena extract may activate the host cell defense mechanisms, rather than directly acting on the influenza virus. Moreover, various minerals, mainly zinc, in Euglena extract were found to be involved in the antiviral activity of the extract. In conclusion, Euglena extract could be a potent agent for preventing and treating influenza.


Asunto(s)
Antivirales , Mezclas Complejas/farmacología , Euglena , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza B/crecimiento & desarrollo , Animales , Perros , Euglena/química , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Células de Riñón Canino Madin Darby , Replicación Viral/efectos de los fármacos , Zinc/análisis , Acetato de Zinc/farmacología
14.
FEBS Lett ; 595(23): 2922-2930, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34738635

RESUMEN

Euglena gracilis produces ATP in the anaerobic mitochondria with concomitant wax ester formation, and NADH is essential for ATP formation and fatty acid synthesis in the mitochondria. This study demonstrated that mitochondrial cofactor conversion by nicotinamide nucleotide transhydrogenase (NNT), converting NADPH/NAD+ to NADP+ /NADH, is indispensable for sustaining anaerobic metabolism. Silencing of NNT genes significantly decreased wax ester production and cellular viability during anaerobiosis but had no such marked effects under aerobic conditions. An analogous phenotype was observed in the silencing of the gene encoding a mitochondrial NADP+ -dependent malic enzyme. These results suggest that the reducing equivalents produced in glycolysis are shuttled to the mitochondria as malate, where cytosolic NAD+ regeneration is coupled with mitochondrial NADPH generation.


Asunto(s)
Anaerobiosis , Euglena/metabolismo , NADP Transhidrogenasas/metabolismo , NADP/metabolismo , NAD/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , NADP Transhidrogenasas/genética
15.
Curr Top Med Chem ; 21(29): 2620-2633, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34392825

RESUMEN

Euglena, a microalga, has gained a great attention as it contains several bioactive compounds including food supplements, drugs and biofuels. The genus Euglena includes >300 species of unicellular, fresh water flagellates. The objective of this review article concerns the presentation of updated information on pharmacological and therapeutic properties and industrial implications of molecules isolated from Euglena species. A bibliographic search of scientific literature published till March, 2020 was made from scientific databases using different search engines. Euglena produces several antioxidant molecules, such as ß-carotene, L-ascorbic acid, polymers of unsaturated fatty acids and phytotoxins useful in manufacturing many pharmaceutical, cosmetics, and nutraceutical compounds. It is a rich source of antimicrobial, anticancer, immunomodulatory compounds. Though, several studies have indicated its therapeutic applications, extensive research is needed to explore its efficacy against many pathophysiological conditions including toxicity assessment of compound(s). Nevertheless, the biotechnological influence on industrial production of Euglena has been less exploited.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Antioxidantes , Biocombustibles , Suplementos Dietéticos , Euglena/química , Agentes Inmunomoduladores , Animales , Biotecnología , Humanos
16.
RNA Biol ; 18(sup1): 139-147, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34308760

RESUMEN

The ribonucleoprotein RNase MRP is responsible for the processing of ribosomal RNA precursors. It is found in virtually all eukaryotes that have been examined. In the Euglenozoa, including the genera Euglena, Diplonema and kinetoplastids, MRP RNA and protein subunits have so far escaped detection using bioinformatic methods. However, we now demonstrate that the RNA component is widespread among the Euglenozoa and that these RNAs have secondary structures that conform to the structure of all other phylogenetic groups. In Euglena, we identified the same set of P/MRP protein subunits as in many other protists. However, we failed to identify any of these proteins in the kinetoplastids. This finding poses interesting questions regarding the structure and function of RNase MRP in these species.


Asunto(s)
ADN de Cinetoplasto/metabolismo , Endorribonucleasas/metabolismo , Euglena/enzimología , Conformación de Ácido Nucleico , Proteínas Protozoarias/metabolismo , Procesamiento Postranscripcional del ARN , ARN Protozoario/metabolismo , Emparejamiento Base , Secuencia de Bases , ADN de Cinetoplasto/química , ADN de Cinetoplasto/genética , Endorribonucleasas/química , Endorribonucleasas/genética , Euglena/genética , Euglena/crecimiento & desarrollo , Kinetoplastida/enzimología , Kinetoplastida/genética , Kinetoplastida/crecimiento & desarrollo , Filogenia , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , ARN Protozoario/química , ARN Protozoario/genética
17.
Phys Biol ; 18(4)2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853054

RESUMEN

Recent experiments and thermodynamic arguments suggest that mitochondrial temperatures are higher than those of the cytoplasm. A "hot mitochondrion" calls for a closer examination of the energy balance that endows it with these claimed elevated temperatures. As a first step in this effort, we present here a semi-quantitative bookkeeping whereby, in one stroke, a formula is proposed that yields the rate of heat production in a typical mitochondrion and a formula for estimating the number of "active" ATP synthase molecules per mitochondrion. The number of active ATP synthase molecules is the equivalent number of ATP synthases operating at 100% capacity to maintain the rate of mitochondrial heat generation. Scaling laws are shown to determine the number of active ATP synthase molecules in a mitochondrion and mitochondrial rate of heat production, whereby both appear to scale with cell volume. Four heterotrophic protozoan cell types are considered in this study. The studied cells, selected to cover a wide range of sizes (volumes) fromca.100µm3to 1 millionµm3, are estimated to exhibit a power per mitochondrion ranging fromca.1 pW to 0.03 pW. In these cells, the corresponding number of active ATP synthases per mitochondrion ranges from 5000 to just about a hundred. The absolute total number of ATP synthase molecules per mitochondrion, regardless of their activity status, can be up to two orders of magnitudes higher.


Asunto(s)
Amoeba/metabolismo , Cilióforos/metabolismo , Metabolismo Energético , Euglena/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Ochromonas/metabolismo
18.
J Phycol ; 57(3): 766-779, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33205421

RESUMEN

Environmental sampling in Poland and the United States and phylogenetic analyses based on 567 sequences of four genes (155 sequences of nuclear SSU rDNA, 139 of nuclear LSU rDNA, 135 of plastid-encoded SSU rDNA, and 138 of plastid-encoded LSU rDNA) resulted in description of the new genus Flexiglena, which has been erected by accommodating Euglena variabilis, and enriching the Discoplastis and Euglenaformis genera with five new species. Four of them have joined the Discoplastis genus, currently consisting of six representatives: D. adunca, D. angusta (=Euglena angusta), D. constricta (=Lepocinclis constricta), D. excavata (=E. excavata), D. gasterosteus (=E. gasterosteus), and D. spathirhyncha. One of them has enriched the Euglenaformis genus, currently represented by two species: Euf. chlorophoenicea (= E. chlorophoenicea) and Euf. proxima. For most studied species, the diagnostic descriptions have been emended and epitypes were designated. Furthermore, the emending of Discoplastis and Euglenaformis diagnoses was performed.


Asunto(s)
Euglena , Euglénidos , ADN Ribosómico , Euglena/genética , Euglénidos/genética , Filogenia , Polonia
19.
Aquat Toxicol ; 228: 105646, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33011648

RESUMEN

2,4-dinitrophenol (2,4-DNP) is a phenolic compound used as a wood preservative or pesticide. The chemical is hazardous to freshwater organisms. Although 2,4-DNP poses ecological risks, only a few of its aquatic environmental risks have been investigated and very limited guidelines for freshwater aquatic ecosystems have been established by governments. This study addresses the paucity of 2,4-DNP toxicity data for freshwater ecosystems and the current lack of highly reliable trigger values for this highly toxic compound. We conducted acute bioassays using 12 species from nine taxonomic groups and chronic assays using five species from four taxonomic groups to improve the quality of the dataset and enable the estimation of protective concentrations based on species sensitivity distributions. The acute and hazardous concentrations of 2,4-DNP in 5% of freshwater aquatic species (HC5) were determined to be 0.91 (0.32-2.65) mg/L and 0.22 (0.11-0.42) mg/L, respectively. To the best of our knowledge, this is the first report of a suggested chronic HC5 for 2,4-DNP and it provides the much-needed fundamental data for the risk assessment and management of freshwater ecosystems.


Asunto(s)
2,4-Dinitrofenol/análisis , Ecosistema , Monitoreo del Ambiente , Agua Dulce/química , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/análisis , Animales , Organismos Acuáticos/efectos de los fármacos , Bacterias/efectos de los fármacos , Chlamydomonas/efectos de los fármacos , Chlorophyceae/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Euglena/efectos de los fármacos , Oryzias , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Especificidad de la Especie , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica , Calidad del Agua
20.
Mar Drugs ; 18(6)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545497

RESUMEN

In the present study, the chemical composition of the microalga Euglena cantabrica was investigated. The extraction of bioactive compounds was done using pressurized liquid extraction (PLE) at different temperatures (40-180 °C) and using green solvents (ethanol-water mixtures). A statistical design of experiments was used to optimize the maximum antioxidant capacity of the extracts by response surface methodology. The antioxidant capacity was determined through the inhibition of 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, while the chemical analyses of the extracts were carried out using different chromatographic techniques. Chlorophylls and carotenoids were analyzed by high-performance liquid chromatography coupled to a diode array detector and mass spectrometry (HPLC-DAD-MS/MS) and carbohydrates by gas chromatography with flame ionization detection (GC-FID) and high-pressure size-exclusion chromatography coupled to an evaporative light-scattering detector (HPSEC-ELSD). The results showed different possibilities for the extraction conditions, depending on the desired bioactivity or chemical composition. Briefly, (i) mixtures of ethanol-water containing around 40% ethanol at 180 °C gave the best antioxidant capacity, (ii) mixtures containing around 50% ethanol at 110 °C gave the best yield of ß-glucan paramylon, and (iii) the use of pure ethanol at a low temperature (40 °C) is the best choice for the recovery of carotenoids such as diatoxanthin. Summing up, E. cantabrica seems to be a good candidate to be used in biorefinery to obtain different bioactive compounds.


Asunto(s)
Euglena/química , Extractos Vegetales/química , Animales , Solventes , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...